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Abstract

Projects on tertiary oil recovery by means of microemulsions have been mainly concerned with, first, the ability of a microemulsion
to dissolve oil and water simultaneously and, second, the attainment of very low interfacial tensions. Therefore, the design and analysis
of chemical flooding processes for enhanced oil recovery must be based on calculations of phase equilibria for these systems, which are
composed of water (brine), oil, surfactant and co-surfactant (usually an alcohol). Consequently, the understanding of phase behavior of
these systems is of fundamental importance to the development of any surfactant-based chemical flooding process.

The purpose of this work was to give a thermodynamic analytical representation of the phase diagram of microemulsion systems similar
to those used in enhanced oil recovery. The algorithms presented for the calculation of multiphase liquid equilibria and the methods for
the estimation of the excess Gibbs energy model interaction parameters were successfully tested for the representation of experimental
multiphase liquid equilibrium data of an oil−brine−surfactant−alcohol model system. In addition, to represent effectively the phase
diagram of this system, an empirical expression was introduced into the selected excess Gibbs energy model to account for the specific
role of the surfactant in these complex systems. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Phase behavior of microemulsion systems is one of the
major factors that determine the displacement efficiency of
a surfactant flood [1,2]. Therefore, the knowledge of phase
behavior is important for the design of surfactant-flooding
processes as well as for the interpretation of core-flooding
experiments in the laboratory and the development of phys-
ical models for the prediction of phase behavior or for
use in surfactant flooding simulators. In addition, physical
quantities affecting oil displacement, such as the interfacial
tensions and viscosity, are related to phase behavior.

Microemulsions are obtained from the mixtures of oil,
water (brine), and a surfactant (an amphiphile molecule).
In most cases, the addition of a co-surfactant (alcohol) is
required to ensure the stability of the microemulsion. For a
given overall composition, one can obtain: an oil-in-water
microemulsion in equilibrium with an excess oil phase
(Winsor I), a water-in-oil microemulsion in equilibrium with
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an excess water-phase (Winsor II), and a microemulsion in
equilibrium with both water and oil excess phases (Winsor
III). Middle-phase microemulsions are often favorable for
a surfactant-flooding process [3]. Hence, it is fundamental
in surfactant flooding to maintain a middle microemulsion
phase as long as possible during the process.

Winsor I microemulsions consist of spherical micelles of
surfactant and co-surfactant dispersed in water, and filled
with oil. Reciprocally, Winsor II microemulsions consist of
micelles dispersed in oil, and filled with water. Winsor III
microemulsions are generally pictured as bicontinuous me-
dia where oil and water domains are separated by aggregated
surfactant.

For a given chemical system, any of these phase behav-
iors will generally be observed when salt or alcohol compo-
sitions are varied. Influence of pressure and temperature on
phase behavior of these systems has a similar effect [4–9].
Thus, a correct knowledge and modeling of this phase be-
havior is essential for engineering purposes. However, this
is a very difficult topic, since the number and nature of the
equilibrium phases are very sensitive to the overall compo-
sition, temperature, and pressure.
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Rossen et al. [10] and Kilpatrick et al. [11] have shown
that this complex behavior could be modeled as a conven-
tional liquid–liquid equilibrium by using a simple expression
of the excess Gibbs energy derived from the Flory theory, but
these authors did not compare their simulations with experi-
mental data. Negahban et al. [12] modeled quantitatively the
phase equilibrium of some simple ternary systems exhibit-
ing a phase behavior of the same type using the UNIQUAC
activity coefficient model. However, it has been recognized
that one of the most challenges in computing phase equilibria
for these complex systems is to ensure the stability, i.e. that
the Gibbs energy of the system reaches its global minimum.

In order to circumvent this problem, we have applied in
the present work a developed regression technique to rep-
resent the phase behavior of microemulsion systems similar
to those used in enhanced oil recovery.

2. Solution approach

At given temperature and pressure, the variance of a sys-
tem of N components exhibitingp phases in equilibrium,
is N–p. It is therefore possible to setN–p mole fractions in
one phase and solve the equilibrium equations for the other
compositions. Such methods are often used for calculating
simple phase equilibria but they cannot be used when the
number of calculated equilibrium phases (which depends
strongly on parameter values) is unknown.

Many methods are also based on the solution of the equi-
librium equations written as the equality of the chemical
potentials for each component between the different phases.
It must be emphasized that the equality of chemical poten-
tials is simply a necessary condition of equilibrium and that
it can lead to solutions which are not the global minimum
of the Gibbs energy (i.e. local minima, maxima or saddle
points).

In our case, the data include the global composition of the
system, which is known accurately. Consequently, we pre-
fer to calculate the phase equilibrium compositions from the
global composition by minimizing the Gibbs energy under
the constraint of mass balance. Initially, the system is as-
sumed to be monophasic. A stability test allows checking if
this solution is stable or not. If not, it provides an estimation
of the composition of an additional phase to take into ac-
count for the equilibrium calculation. The number of phases
is then increased by one, and equilibrium is converged by
minimizing the Gibbs energy. This procedure is continued
until a stable solution is found.

2.1. Stability test

As mentioned above, a severe problem associated with
phase equilibrium calculations of a multicomponent system
at specified temperature and pressure is that the number
of phases is not known in advance. The conventional ap-
proach is to fix arbitrarily this number and to calculate the

phase equilibrium compositions. However, this may lead to
convergence failure with numerical methods not reliable or
may require a substantial amount of calculations only to ar-
rive at a trivial solution in cases where the number of phases
is too high. This problem is of particular importance when
it is integrated, for instance, to the simulation of reservoirs
in enhanced oil recovery.

Gibbs first addressed the problem of determining whether
a homogeneous multicomponent mixture can be divided
spontaneously and irreversibly into two or more different
phases, in 1876 and it has been the object of several publica-
tions. The stability criteria, from the thermodynamic point of
view, are well known and they have been already discussed
in the literature (see [13,14]). These criteria, based on the
local convexity of the Gibbs energy are, to date, of limited
application for some binary or ternary mixtures. Van Don-
gen et al. [15] presented a rigorous extension to multicom-
ponent mixtures; however, there is still disagreement in the
development of practical applications [16]. This is mainly
due to the following two reasons. Firstly, the test is only lo-
cally applicable, hence it is a qualitative one; therefore, it
does not allow to provide the compositions of a new phase
if an instability is detected. Secondly, this approach does not
allow, for a given phase, to distinguish the stable zone from
the metastable one; the function of the Gibbs energy being
convex for both zones.

To overcome this problem, several authors have developed
alternative approaches for thermodynamic stability analysis
that enables to predict the number and type of phases in
equilibrium as well as to obtain the accurate initial estimates
for phase equilibrium calculations.

In this work, the stability analysis of a homogeneous sys-
tem of compositionx(ϕ), based on the minimization of the
distance separating the Gibbs energy from the tangent plane
at x(ϕ), has been considered. This stability criterion was ini-
tially presented as a theorem by Baker et al. [17] and it has
given place to numerical applications by Michelsen [18] and
by Nghiem and Heidemann [19], among others.

Baker et al. [17] demonstrated that the necessary and suf-
ficient condition for a system to be stable, at a specified tem-
perature and pressure, is that the tangent plane to the Gibbs
energy surface at compositionx(ϕ) should at no other point
intersects the Gibbs energy surface. The resulting corollary
would express that at a given composition, a system is un-
stable if the tangent plane to the Gibbs energy surface at
that point intersects the Gibbs energy surface at some other
point in the overall composition range. These authors indi-
cate that mathematically the solution of the phase equilibria
problem can be obtained by finding a tangent plane to the
Gibbs energy surface at two or more points which leads to
the least value of the Gibbs energy. Such points of tangency
correspond to the compositions of the predicted equilibrium
phases being required by the material balance restrictions,
so that the global composition of the system lies within
the region bounded by these points. Since the slope of the
tangent plane corresponds to the chemical potentials of the
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components, this tangent plane criterion is equivalent to that
requiring equality of chemical potentials. That is, preserva-
tion of the material balance and a state of lowest possible
Gibbs energy as the conditions for equilibrium at the speci-
fied temperature and pressure.

Michelsen [18] suggested a numerically efficient method
for solving the stability analysis based on the tangent plane
criterion which does not require estimates of the number
of phases at equilibrium and that provides compositions
of the new phases for unstable systems as a preliminary
step in flash calculations. This test has its foundation on
the fact that if a decrease in Gibbs energy cannot be
achieved when a homogeneous mixture is divided into two
phases (formed by removing an infinitesimal amount of the
original mixture), then the mixture is stable. In terms of
activity coefficients,γ i , this criterion for stability can be
written as

F(x) =
N∑
i=1

xi [ln xi + ln γi(x) − hi ] ≥ 0 ∀x (1)

where

hi = ln x(ϕ)i + ln γi(x(ϕ)) i = 1, . . . , N (2)

Eq. (1) requires that the tangent plane at no point lies above
the Gibbs energy surface and this is achieved whenF(x)
is positive in all its minima. Consequently, a minimum of
F(x) should be considered in the interior of the permissible
region:

N∑
i=1

xi = 1 ∀x ≥ 0 (3)

Since to test condition (1) for all trial compositions is not
physically possible, Michelsen [18] asserts that it is suf-
ficient to test the stability at all stationary points ofF(x)
since this function is not negative at all stationary points.
That is, points where the derivatives ofF(x) with respect
to all independent variables are equal to zero. Hence, by
solving the following equation describing the stationary
point:

ln ξi + ln γi(x) − hi = 0 i = 1, . . . , N (4)

the stability is verified providing that at all stationary
pointsF(x) ≥ 0, corresponding to

∑N
i=1ξi ≤ 1. Conversely,

a phase is considered unstable if stationary points where
F(x) < 0 or

∑N
i=1ξi > 1 can be located. In Eq. (4), the in-

dependent variablesξ i can be interpreted as mole number
with corresponding mole fractions,xi = ξi/

∑N
j=1ξj (i =

1, . . . , N).
An equivalent stability criterion to that given by Eq. (5)

but based on variablesξ i was also formulated by Michelsen
[18] as

F ∗(ξ) = 1 +
N∑
i=1

ξi [ln ξi + ln γi(x) − hi − 1] ≥ 0 (5)

where no constraints onξ i except thatξi > 0 (i = 1, . . . , N)
are required, so that the stationary points ofF∗(ξ ) correspond
to those of functionF(x). Moreover, sinceF∗(ξ ) is negative
in all points whereF(x) is negative, then a negative value of
F∗(ξ ) indicates an instability of the system.

Thus, solving for Eqs. (4) and (5) and obtaining
∑N

i=1ξi ,
are all the necessary calculations required to determine the
stability of the system of compositionx(ϕ) at constant tem-
perature and pressure. The methods proposed by Michelsen
[18] for solving the stationary points, Eq. (8), are direct
substitution and accelerated direct substitution. Acceleration
methods such as the general dominant eigenvalue method
[20] or Broyden’s method [21] are recommended while
a minimization method applied to the stability function,
Eq. (5), is also suggested.

Here, the quasi-Newton BFGS minimization method (see
[22]) has been applied to Eq. (5) to determine the stability of
a given system of compositionx(ϕ) at specified temperature
and pressure. Since the functionF∗(ξ ) allows usually multi-
ple points, which can be minima, maxima or saddle points,
then the adoption of such a method for solvingF∗(ξ ), under
the constraintsξi > 0, will prove to be effective in so far as
it leads to the search of local minima ofF∗(ξ ); the sign of
F∗(ξ ) in these minima enables to conclude with regard to
the stability of the system.

The iterative procedure used by the quasi-Newton BFGS
method can be written as

s(k) = −H(k)q(k) (6)

α(k+1) = α(k) + λs(k) (7)

whereq is the gradient ofF∗(ξ ) considered as a function of
the iteration variables,αi = 2

√
ξi , and is given by

q =
√
ξi [ln ξi + ln γi(x) − hi ] i = 1, . . . , N (8)

whereas the Hessian matrix is

A = B + 1

2
δij [ln ξi + ln γi(x) − hi ] i, j = 1, . . . , N (9)

where

B = δij +√
ξiξj

(
∂ ln γi(x)

∂ξj

)
i, j = 1, . . . , N (10)

δij denoting the Kronecker symbol which is unity ifi = j

and equal to zero otherwise.
In a stationary point, the gradient is null and the Hessian

matrixA equals to matrixB, which is very close to the iden-
tity matrix. Also, it can be seen that the trivial solutionξ =
x(ϕ) corresponding to a stationary point, is a local minimum
of F∗(ξ ) if and only if B is positive definite in that point.
The approximantH to the inverse Hessian matrix ofF∗(ξ ),
A−1, can be initialized by any symmetric positive defi-
nite matrix such as the identity matrix and it is corrected or
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updated by the double-rank BFGS formula:

H(k+1) = H(k) +
(

1 + γ(k)TH(k)γ(k)

δ(k)Tγ(k)

)
δ(k)δ(k)T

δ(k)Tγ(k)

−
(

δ(k)γ(k)TH(k) + H(k)γ(k)δ(k)T

δ(k)Tγ(k)

)
(11)

with

δ(k) = α(k+1) − α(k) (12)

γ(k) = q(k+1) − q(k) (13)

during the subsequent iterations. In addition, this method
requires a line search algorithm to compute the step lengthλ.
This is done by using a rigorous method such as the proposed
by Fletcher [22]. The purpose of the line search being to
ensure a satisfactory decrease of the functionF∗(ξ ), then the
following requirements have been set to achieve this aim:

F ∗(ξ)(k) − F ∗(ξ)(k+1) ≥ −ρλq(k)Ts(k) (14)

q(k+1)Ts(k) ≥ σq(k)Ts(k) (15)

Fig. 1. Overall structure of the one-dimensional line search algorithm.

Since test given by Eq. (15) does not reduce to an exact line
search in the limitσ → 0, then the following test

|q(k+1)Ts(k)| ≤ −σq(k)Ts(k) (16)

is recommended to obtain an exact line search in this limit.
In general, the line search algorithm to compute the step

lengthλ is started with a weak line search (σ = 0.9) and
finished with a fairly accurate line search (σ = 0.1); the
parameterρ being fixed equal to 0.01. Restricted, quadratic
interpolations or cubic extrapolations and interpolations de-
pending on the test of Eqs. (14)–(16), are used to reach an
acceptable value ofλ.

Fig. 1 shows the overall structure of the one-dimensional
line search algorithm used in this work. Fletcher [22] has
shown that this algorithm takes into account the effect of
round-off errors and turns out into an exact line search when
σ tends to zero.

In so far as the approximantH remains positive definite,
the property of descent onF∗(ξ ) is effective and the conver-
gence is always toward a local minimum. However, it does
not guarantee the convergence to a negative one immediately
after having found any kind of minimum; the only arbitrary
part in this method being the initialization of variablesξ i .
This method has a superlinear rate of convergence at the
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end of calculations and the converged approximant to the
inverse of the Hessian matrix is very close to the real one.

When the stability of a system is studied in relation to
multiphase liquid equilibria, several minima of the function
F∗(ξ ) may coexist so that different initializations should be
used to reach them. Here, the search is initialized from al-
most pure phases (N different initializations) and from an
equimolar mixture. The initializations corresponding to pure
trial phases have the advantage that liquid immiscibility in
highly non-ideal systems is promptly detected and compo-
nent activity coefficients are evaluated cheaply. Nonetheless,
it is certain that for a large number of cases, one of these
initial guesses involves an approach toward the trivial solu-
tion, i.e.ξ=x(ϕ). These calculations can be avoided if after
each iteration the convergence variable

r = 2F ∗(ξ)∑N
i=1((ξi − x

(ϕ)
i )/αi)(∂F ∗(ξ)/∂αi)

(17)

is evaluated. Thus, the value ofr will approach the unity as
ξ approaches the trivial solution, so the search is abandoned
when

|r − 1| < 0.2 andF ∗(ξ) < 10−3 (18)

while the criterion of convergence used for the non-trivial
solution was

||q||22 =
N∑
i=1

(
∂F ∗(ξ)
∂αi

)2

< 10−7 (19)

When the stability of a single-phase system is tested, all
different initializations are explored until finding two nega-
tive minima (if they exist) of the functionF∗(ξ ). Therefore,
two minima at least exist if the system is locally unstable;
the compositions corresponding to these minima are used
to initialize the two-phase equilibrium calculation. On the
contrary, ifF∗(ξ ) admits only a minimum, then the system
is metastable and the composition which corresponds this
minimum together with the overall composition are used to
initialize the equilibrium calculation. A system with several
phases in equilibrium is always metastable (the equilibrium
having been already calculated); hence, we search only an
instability and the phase equilibrium calculation is initial-
ized from the new composition and from the compositions
of the initial phases in equilibrium.

2.2. Phase equilibrium calculations

The problems that are commonly found when we solving a
set of equations describing the equilibrium between multiple
phases, are translated by a multitude of solutions without
physical significance because of the lack of convergence
with certain numerical methods or due to the absence of a
good initialization.

The number ofp phases in equilibrium being unknown in
advance, then two different approaches have been developed
for solving the problem. The first one consists of assuming

a maximum number of phases that can be deduced from
the phase rule, then removing that one which does appear
during phase equilibrium calculations. This approach is not
economical in terms of the number of calculations that it
is necessary to carry out, and may fail to find a solution
or may lead to erroneous solutions. The second approach
allows solving the problem atp phases when instability is
detected with the solution atp − 1 phases. This approach,
more frequently used, only is effective if it is accompanied
of a rigorous stability test for multiphase systems and of an
appropriate numerical method of calculation.

Arguably, one of the most useful methods to calculate
phase equilibria reported in the literature is based on the
minimization of the total Gibbs energy. This method offers
scope for solving phase equilibrium atp phases immediately
after stability atp − 1 phases is carried out. Basically, the
formulation of the problem can be stated as the search for the
global minimum of the molar Gibbs energy of the system,
G, at specified temperature,T, and pressure,P,

Min
n
(ϕ)
i

G =
p∑

ϕ=1

N∑
i=1

n
(ϕ)
i µ

(ϕ)
i (20)

under the material balance constraints
p∑

ϕ=1

n
(ϕ)
i = zi i = 1, . . . , N (21)

and the inequality constraints

n
(ϕ)
i ≥ 0 i = 1, . . . , N; ϕ = 1, . . . , p (22)

where zi is the mole fraction of componenti in the sys-
tem andn(ϕ)i is the mole number of componenti in phase

p per mole of feed. If the chemical potentialsµ(ϕ)
i (i =

1, . . . , N ; ϕ = 1, . . . , p) are expressed in terms of activ-
ity coefficients and assuming the compositionn(p)i of the

phasep as dependent of the variablesn(ϕ)i (i = 1, . . . , N ;
ϕ = 1, . . . , p), then the problem reduces to the following
constrained minimization

Min
n
(ϕ)
i

�g =
p∑

ϕ=1

N∑
i=1

n
(ϕ)
i ln(x(ϕ)i γ

(ϕ)
i ) (23)

with the inequality constraints given by Eq. (22) and
p−1∑
ϕ=1

n
(ϕ)
i ≤ zi i = 1, . . . , N (24)

where the variablesn(p)i , x(p)i , andγ (p)
i (T , P, x(p)) are con-

sidered functions ofn(ϕ)i (i = 1, . . . , N ; ϕ = 1, . . . , p−1);
the inequalities (22) and (24) defining a convex domain of
the variablesn(ϕ)i in RN(p−1).

The gradientg and the Hessian matrixG of �g, can then
be evaluated from

g = ln

(
x
(ϕ)
i γ

(ϕ)
i

x
(p)
i γ

(p)
i

)
i = 1, . . . , N; ϕ = 1, . . . , p − 1

(25)



262 F. Garćıa-Śanchez et al. / Chemical Engineering Journal 84 (2001) 257–274

and

G =

δϕφ


 δij

n
(ϕ)
i

− 1

N(ϕ)
+ ∂ ln γ (ϕ)

i

∂n
(ϕ)
j




+

 δij

n
(p)
i

− 1

N(p)
+ ∂ ln γ (p)

i

∂n
(p)
j






i, j = 1, . . . , N; ϕ, φ = 1, . . . , p − 1 (26)

If the equilibrium ratios of each componenti between phase
ϕ and the reference phasep (which is generated from a
stability test)

K
(ϕ)
i = x

(ϕ)
i

x
(p)
i

i = 1, . . . , N; ϕ = 1, . . . , p − 1 (27)

are introduced, we can then express the Hessian matrixG
as the summation of two symmetrical matricesA andQ of
orderN(p − 1), defined as

A =




A(1)

A(2)

. . .

A(p−1)


 (28)

and

Q =




Q(1) R · · · R

R Q(2) ...

...
. . . R

R · · · R Q(p−1)




(29)

where A(ϕ), Q(ϕ), and R are all symmetrical matrices of
orderN such that forϕ = 1, . . . , p − 1 we have

A(ϕ) =

∂ lnK(ϕ)

i

∂n
(ϕ)
j




=
[
δij

(
1

n
(ϕ)
i

+ 1

n
(p)
i

)
− 1

N(ϕ)
− 1

N(p)

]

i, j = 1, . . . , N (30)

Q(ϕ) =

∂ ln γ (ϕ)

i

∂n
(ϕ)
j


+


∂ ln γ (p)

i

∂n
(p)
j


 i, j = 1, . . . , N

(31)

R =

 δij

n
(p)
i

− 1

N(p)
+

∂ ln γ (p)

i

∂n
(p)
j




 i, j = 1, . . . , N

(32)

Ammar [23] has shown that matricesA(ϕ) (ϕ = 1, . . . ,
p − 1) are all positive definite inside the same domain of

coexistence involving thep phases. Hence, matrixA and its
inverseA−1 can easily be evaluated from matricesA(ϕ) and
A(ϕ)−1 which are evaluated analytically.

In this work, the following scheme based on the mini-
mization of the total Gibbs energy and using lnK(ϕ) (ϕ =
1, . . . , p−1) as variables, at specified temperature and pres-
sure, has been adopted for solving the multiphase liquid
equilibria for multicomponent systems:

1. Initialize the equilibrium ratios lnK(ϕ) (ϕ = 1, . . . ,
p − 1) from a stability test.

2. Solve the set of non-linear equations by Newton–Raphson
iteration:
N∑
i=1

zi(K
(ϕ)
i − 1)

Ji
= 0 ϕ = 1, . . . , p − 1 (33)

with

Ji = 1 +
p−1∑
ϕ=1

N(ϕ)(K
(ϕ)
i − 1) i = 1, . . . , N (34)

to compute the phase fractionsN(ϕ)

N(ϕ) =
N∑
i=1

n
(ϕ)
i ϕ = 1, . . . , p − 1 (35)

3. Calculate the mole fractionsx(ϕ)of the different phases
from

x
(p)
i = zi

Ji
i = 1, . . . , N (36)

x
(ϕ)
i =K

(ϕ)
i x

(p)
i i=1, . . . , N; ϕ=1, . . . , p−1 (37)

4. Calculate�g, g, and perform the convergence test

∥∥∥g(k)
∥∥∥2

2
=

p−1∑
ϕ=1

N∑
i=1

[
ln

(
x
(ϕ)
i γ

(ϕ)
i

x
(p)
i γ

(p)
i

)]2

< 10−10 (38)

5. Define new values of lnK(ϕ) and return to step (2).

The whole process is then repeated until convergence is
achieved. It has been identified [24] that Eq. (23) can ef-
ficiently be solved from an unconstrained minimization al-
gorithm by keeping the variablesn(ϕ)i (i = 1, . . . , N ; ϕ =
1, . . . , p− 1) inside the convex constraint domain given by
Eqs. (22) and (24) during the search for the solution. Nev-
ertheless, mainly for multiphase systems, some algorithms
can lead to a violation of these constraints at the earliest it-
erations when the initialization is far from the solution even
if the latter was obtained from a stability test. That is, the
projection of the variablesn(ϕ)i on the constraints domain
cannot be numerically justified with some algorithms and
results in a singularity of matrixA and, consequently, in an
erratic behavior of the subsequent iterations.

In order to overcome these difficulties, we have adopted
a hybrid approach to minimize the total Gibbs energy of the
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system starting with the steepest–descent method in con-
junction with a robust initialization supplied from the sta-
bility test to ensure a certain progress from initializations,
and ending with the quasi-Newton method which ensure the
property of strict descent of the Gibbs energy surface; the
converged solutions from both methods representing local
minima of the Gibbs energy.

The iterative scheme presented above is common for these
two methods and only the form to update the values of lnK(ϕ)

in step (5) of the scheme will differ from one method to
another.

2.3. Steepest–descent method

This method is a gradient-type one and it is an extension
of the successive substitution algorithm incorporating a line
search to estimate the step lengthλ, and can be expressed as

s(k) = −A(k)−1g(k) (39)

p(k) = A(k)s(k) = −g(k) (40)

ln K(k+1) = ln K(k) + λp(k) (41)

2.4. Quasi-Newton BFGS method

This method has a superlinear convergence at the end of
calculations and although is slower to reach the solution
than with the Newton method (with quadratic convergence
rate), it has the advantage of generating a matrix very close
to the inverse Hessian matrixG−1 so that this method has
the same feature as the Newton method under the circum-
stances where the initiation procedure is performed near of
converged points. The BFGS step can be written as

s(k) = −H(k)−1g(k) (42)

p(k) = A(k)s(k) (43)

ln K(k+1) = ln K(k) + λp(k) (44)

where the approximantH to the inverse of the Hessian matrix
is set equal toA−1 at the end of the steepest–descent method
and it is updated by the BFGS formula

δ(k) = ln K(k+1) − ln K(k) (45)

γ(k) = g(k+1) − g(k) (46)

and Eq. (11) during the subsequent iterations. All matrices
H are positive definite since matrixA−1 is positive definite;
hence, the descent property is ensured and convergence is
always to local minima.

The common feature of these methods is that both require
a partial line search algorithm to compute the step length

λ, which is done by imposing the following requirements
uponλ

�g(k) − �g(k+1) ≥ −ρλg(k)Ts(k) (47)

g(k+1)Ts(k) ≥ σg(k)Ts(k) (48)

and

|g(k+1)Ts(k)| ≤ −σg(k)Ts(k) (49)

in order to ensure a satisfactory decrease of�g, and re-
stricted, quadratic interpolations or cubic extrapolations and
interpolations are used to findλ.

In addition, it is worth noting that one of the most
important steps of our algorithm is the switch from the
steepest–descent method to the quasi-Newton BFGS one,
since it should lead to a decrease in execution time during the
calculations; otherwise, the switch is not necessary. There-
fore, based on extensive testing of phase equilibrium calcu-
lations, it is suggested that the passage to the quasi-Newton
BFGS method takes place after at least five iterations and
when the gradient norm is lower than 10−3RT. Nonetheless,
in certain situations corresponding to an ill conditioning
of the Hessian matrix, it may be necessary to get back
temporally (2–3 iterations) to the steepest–descent method.

3. Data regression

In order to use an excess Gibbs energy model for
liquid–liquid equilibrium calculations, it is essential to ob-
tain the required adjustable model parameters from regres-
sion of experimental data which, in turn, can be used for
interpolation of the data or extrapolations in regions beyond
where measurements have been made. Therefore, with a
given set of model parameters, it is possible to calculate
the number of phases in equilibrium and their compositions
from the global composition of the system. However, if the
minimization of�g is started from any set of parameters,
the phase equilibrium calculation could, for instance, lead to
a homogeneous system in which the distance to the experi-
mental system will be independent of the parameter values
inside a certain domain. Consequently, it is necessary to
initialize these parameters with reasonable values. Toward
this end, the following procedures are given to estimate the
model parameters from liquid–liquid equilibrium data:

1. Minimization of the sum of squared differences between
activity logarithms of each component in each phase

Fa =
Neq∑
j=1

N∑
i=1

wij [(ln a
I
ij − ln aII

ij )
2 + (ln aI

ij − ln aIII
ij )

2]

+Q

Npar∑
m=1

p2
m (50)
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wherewij is the weighting factor associated to the com-
ponenti of tie line (or tie triangle)j andaI

ij = xI
ijγ

I
ij is

the activity of componenti of tie line (or tie triangle)j in
phase I;xI

ij being the corresponding experimental mole

fraction andγ I
ij the activity coefficient, which is calcu-

lated from an excess Gibbs energy model depending on
xI

ij and the model parameterspm (m = 1, . . . , Npar).
Eq. (50) has been written for three equilibrium phases
but for systems with two equilibrium phases, it reduces
to contents of the first bracketed term.

2. Minimization of the sum of squared differences between
experimental and calculated mole fractions

Fx =
Neq∑
k=1

Nph∑
j=1

N∑
i=1

wijk(x
expl
ijk − xcalc

ijk )2 + Q

Npar∑
m=1

p2
m (51)

wherewijk , xexpl
ijk , and xcalc

ijk represent, respectively, the
weighting factor, the experimental mole fraction, and the
calculated mole fraction of componenti in phasej cor-
responding to the tie line (or tie triangle)k.

The second term of the right-hand side of Eqs. (50) and
(51), i.e. the “penalty” term, is added to the objective func-
tions Fa andFx to ensure that we can get relatively small
parameters without increasing the minimum of these func-
tions, so that the risk of multiple solutions is avoided. This
term has also the advantage that the minimum ofFa and
Fx becomes sharper promoting thus the convergence, and
it is activated only if one or more of the model param-
eters are greater than a specified value. In this work, we
have chosen the value of constantQ in such a way that
the quantityQ(500)2 is approximately one per cent of the
value of the objective function (Fa or Fx). This approach
has been systematically used to estimate the interaction pa-
rameters of the selected excess Gibbs energy model. In ad-
dition, we have also replaced the experimental uncertain-
ties (which in general are not available) by weighting fac-
tors that can be used to force the thermodynamic model to
represent with more accuracy certain concentrations. Here,
unless otherwise stated, all these factors were fixed equal
to unity.

Although the activity objective functionFa has been fre-
quently used in the literature, it suffers from the disadvan-
tage that it only contains the differences between computed
activities. Hence, minimization of this function does not
necessarily lead to small differences between experimental
and calculated mole fractions, which is desired in practice.
Notwithstanding, to obtain an initial guess of the model pa-
rameters, it is often advantageous to use functionFa since
it can be evaluated explicitly. Parameters obtained in this
fashion provide a sufficiently good initial estimate to enable
fairly easy convergence in subsequent iterations based onFx .

Conversely, minimization of objective functionFx is
more complicated and time consuming [25–27]. It involves
the computation of mole fractionsxcalc

ijk for a given set of
parameters from which will arise a new set of parameters.

Computation is continued until the value ofFx is smaller
than a prescribed tolerance.

In Eq. (51), the experimental and calculated phases cor-
responding to each point of overall composition are coupled
by order of decreasing proximity. However, it is possible that
during minimization of functionFx , there exists a mismatch
in the number of calculated and experimental phases, e.g.
when there are two experimental phases but three calculated
ones. In this case, the calculated phase that is the farthest
from experimental phases will not be taken into account in
the objective function. In fact, it is expected that this last
phase will only appear in a very small amount as soon as the
other calculated phases are close to the experimental ones
since both the calculated and experimental systems corre-
spond to the same overall composition. In this regard, based
on the representation of a wide variety of binary, ternary,
and quaternary systems, this approach always matched cor-
rectly the number of calculated and experimental phases for
all systems studied.

Here, the estimation of the interaction parameters of the
selected excess Gibbs energy model was carried out in a
two-step procedure, which involves the minimization of
functions Fa and Fx by using the simplex [28] and the
Marquardt [29] optimization methods.

4. Microemulsion phase diagram representation

Although the system of interest contains electrolytes
(the surfactant and sodium chloride), we use a simple
non-electrolyte expression of the excess Gibbs energy. In
fact, we have no quantitative information on the partitioning
of salt between water and microemulsion phases. We shall
therefore consider the brine as a unique pseudo-component
(which is not fully justified in the case of Winsor I or III
equilibria). We have also considered oil and surfactant as
pseudo-components. There is experimental evidence that
this assumption is correct. The system is then reduced to
four components: surfactant, alcohol, brine, and oil.

4.1. Experimental data

Data determined at 25◦C by Minssieux et al. [30] at the
French Petroleum Institute are used in this work. These data
cover the complete phase diagram for a model system made
up from:

• Witco TRS 10–80. This is a commercial ionic surfactant
(a sodium alkylbenzene sulfonate) of average molecular
weight equal to 420.

• n-Butanol as co-surfactant.
• Brine (8 g/l of sodium chloride).
• Esso “Ṕetrole D” (a dearomatized fraction in C12–C14).

This system is a very complex one because: (a) it uses an
industrial surfactant that is not anymore a pure component;
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(b) oil is also a mixture (an oil fraction); and (c) the system
contains salt no analyzed.

As the overall salinity of the mixtures was not varied
along the experimental study, it is assumed that the brine
(water + salt) behaves as a pseudocomponent. This hy-
pothesis is not fully justified by the experimental results
themselves; one notes that the vertices of the microemul-
sion trinodal triangles do not describe a curve according to
the analysis of variance, but distribute them on a surface
[31,32]. We can expect therefore some difficulties for the
correlation of the experimental data of type Winsor III.
Nevertheless, the experimental data are abundant and cover
a large domain of the phase diagram (Winsors I, II and III).

Samples of known overall composition were allowed to
reach the phase equilibrium at 25◦C. Once the equilibrium
is reached (i.e. the constancy in the time of phase volumes is
verified), compositions of the different phases in equilibrium
were then analyzed for surfactant, alcohol, water, and oil.
Partitioning of salt between phases were not measured.

The experimental phase diagram can be visualized in a
tetrahedron trirectangle whose vertices are brine, alcohol,
oil and surfactant, respectively (see Fig. 2). The quater-
nary diagram defining the system used (to determine the

Fig. 2. Quaternary representation of the model system: brine (8 g/l NaCl)–oil (a dearomatized fraction in C12–C14)–alcohol (n-butanol)–surfactant (Witco
TRS 10–80) at 25◦C.

multiphase domains and to analyze the systems in equilib-
rium), has been explored systematically by cutting up the
tetrahedron in different vertical planes corresponding to mix-
tures of constant water-to-oil ratios (WOR). In every plane
WOR, sets of mixtures at constant content in surfactant (Sn
on Fig. 3) and at increasing content in alcohol were prepared.

The strategy adopted for the exploration of the phase di-
agram is schematized on Fig. 3. In this figure, it is shown
the trajectories followed inside the tetrahedron by the global
compositions of the mixtures situated in a determined WOR
plane. The maximum contents in surfactant and in alcohol
were limited to 20% in mass fraction.

By considering the ternary diagrams gotten in two faces of
the tetrahedron shown in Fig. 2, one observes the following
features:

• The ternary diagram brine–oil–surfactant (see Fig. 4) is
of type Winsor I, which indicates that in the absence of
alcohol, the surfactant has more affinity for the brine than
for oil.

• The ternary diagram brine–oil–alcohol (see Fig. 5) shows
an inversion of partition of the alcohol between the
phases water and oil, when the content in alcohol of the
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Fig. 3. Plane of a vertical cut of the model system tetrahedron corresponding to mixtures where the water-to-oil ratio is constant.

mixtures increases. It is interesting to note on this face, the
horizontal tie line corresponding to mixtures containing
about 5% in mass fraction of alcohol, which produces a
coefficient of partition of the alcohol equal to one.

On the other hand, Fig. 6 presents the planes WOR= 1
and WOR= 3. An examination of this figure shows the
following features:

• A single-phase zone that links up to the line of demixing
of the ternary brine-surfactant-oil.

• A three-phase region, very extended in the direction
water-oil, that links up to the tie line of the ternary
water–oil–alcohol.

• Above the three-phase domain (i.e. the zone with higher
content in alcohol), a region of type Winsor II is developed
where the upper micellar phases are the richest in alcohol
and in surfactant.

It can also be noted in Fig. 6, the existence of an intersec-
tion point where converge the four domains (Winsors I, II,
III, and a single-phase zone). This point of confluence rep-
resents the highest mutual solubility of water and oil in the
presence of a minimum amount of surfactant and alcohol.

Several hundreds of equilibrium points were measured:
for water–oil ratios ranging from 0.08 to 20, and for various

compositions in surfactant and alcohol. However, only the
experimental data for a water–oil ratio equal to one were
used in our calculations.

4.2. Thermodynamic model

In spite of its importance in tertiary oil recovery, the ther-
modynamic study of microemulsion phase diagrams remains
still little developed. Beyond the survey of the variance ac-
cording to the number of components and phases [31–33], it
is essential in tertiary oil recovery to represent these phase
diagrams by means of an correlation or a molecular model
that allows the calculation of compositions in coexistence for
a mixture of given composition and fixed temperature. This
model must be analytical, based on methods of the classi-
cal thermodynamics, and should contain adjustable param-
eters from experimental data. Once the model parameters
are determined, it should be possible to extrapolate them, as
a function of the composition and temperature, in regions
beyond where experimental data are not available.

As mentioned above, the studied systems in tertiary oil
recovery contain at least four components: water, oil, surfac-
tant and co-surfactant (alcohol), to which one adds, in order
to represent the reality of an oil reservoir, at least a salt such
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Fig. 4. Experimental liquid–liquid equilibria diagram of the system brine−oil−surfactant at 25◦C [42]. The circles are the experimental results obtained
by turbidity titration, which are connected by a full line. The squares are the experimental end points of the tie lines (solid lines).

as sodium chloride. It is therefore a system of five compo-
nents (containing ions) that it is necessary to modeling. In
fact, oil and surfactant are often complex mixtures, which
can be considered as “true pseudocomponents” in the sense
that all other components of oil or surfactant distribute in
the same way between phases.

The approach that we have chosen for modeling the phase
equilibria of microemulsion systems, consists in using ex-
pressions of the excess Gibbs energy commonly used in
chemical engineering and whose flexibility has been recog-
nized. Therefore, we do not take explicitly into account the
formation of micelles (see [34–39]).

Calculated phase equilibrium compositions will be
matched to experimental compositions by adjusting the
model parameters without making more hypotheses on the
structure of the solution. Besides, we make no simplifying
hypothesis on the distribution of the other components into
the phases in equilibrium.

The usual thermodynamic models are separated between
models of electrolytes and non-electrolytes. In fact, the main
difference between these two classes of models is due to
the presence of an electrostatic interaction term (i.e. the
Debye–Ḧuckel term) in electrolyte models. This term has
an important influence on the behavior at infinite dilution
of the ionic species as the phases found in enhanced oil

recovery are either nonionic (oil phase in Winsor I) or highly
concentrated in ionic species, and where we do not have any
information on the partition of salt between the phases, it
appears valid to use models of nonelectrolytes. One consid-
ers the brine (water+ salt) as a pseudocomponent. This last
approximation is imposed by the insufficient experimental
information, and permits therefore only an inaccurate rep-
resentation of the phase equilibrium data.

Toward this end, we have chosen the extended UNIQUAC
equation of Nagata [40] for our calculations. The expression
of the excess Gibbs energy for this equation is

gE = gE,comb+ gE,res (52)

wheregE, comb is the combinatorial term which takes into
account the differences of size between molecules:

gE,comb

RT
=

N∑
i=1

xi ln

(
φi

xi

)
− z

2

N∑
i=1

qixi ln

(
φi

θi

)
(53)

andgE, res is the residual term which takes into account the
interactions between molecules and the shape of a term of
local compositions:

gE,res

RT
= −

N∑
i=1

q∗
i xi ln Si (54)
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Fig. 5. Experimental liquid–liquid equilibria diagram of the system brine−oil−alcohol at 25◦C [42]. The circles are the experimental results obtained
by turbidity titration, which are connected by a full line. The solid lines are the experimental tie lines. Note the inversion of partition of the alcohol
between the brine and oil phases as the content in alcohol of the mixture increases.

with

θi = xiqi∑N
j=1xjqj

(55)

ϕi = xiri∑N
i=1xj rj

(56)

and

Si =
N∑
j=1

θj τji (57)

whereZ is the lattice coordination number equal to 10, and
ri , qi andq∗

i parameters, are molecular and structural prop-
erties of componenti, which depend on the size and external
area of the molecules.

We find in the combinatorial term, the expression of
Flory–Huggins, which is also used in the model of Kil-
patrick et al. [11] and that of Troully [41]. This term is
“predictive” in the sense that it can be calculated from the
structures of the molecules present in the solution. We used
the parameters of the UNIFAC group given by Ghmel-
ing et al. [42] to determine the parameters of volume and
surface of the pure components.

On the other hand, the expression of the residual term has
largely shown its superiority over the model based on the

regular solution theory in the correlation of phase equilibria
of simple systems. Parametersτ ij are, in principle, related
to the differences of energies between molecules according
to the following expression

τij = exp
(
−aij

T

)
(58)

These are the binary parameters (and sometimes the
pure-component parameterq∗

i ) that we will adjust to fit the
experimental data, in the sense that they can rather translate
the nature attractive or repulsive of the interactions between
moleculesi and j.

Parametersri and qi are obtained from group contribu-
tions while parameterq∗

i can be estimated asq∗
i = q0.2

i . This
correlation was used for oil, while for water andn-butanol
we used values recommended by Nagata [40]. For surfac-
tant, this parameter was fitted to the experimental data.

In order to represent the strong increase of the mutual
solubilities of oil and water in presence of surfactant, we also
introduce an effect of surfactant concentration on the binary
parameter water–oil. This allows us to have different values
for the interaction parameters of oil with water depending
on the surfactant concentration [43]:

τw−o = τ
(1)
w−o + (τ

(0)
w−o − τ

(1)
w−o)exp(−σ 2

w−o−sxs) (59)

and similarly for the oil–water interaction. In this
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Fig. 6. Ternary diagrams showing vertical cuts of the tetrahedron representing the model system (brine−oil−alcohol−surfactant) in two different WOR
planes [42]. The triangles, circles, and squares are the experimental global composition points of the homogeneous, Winsor I, and Winsor II regions,
respectively. The solid lines are the experimental boundaries, which separate the domains Winsors I, II, III, and a single-phase zone.

expression, parameterτ (0)ij represents the value of the inter-
action coefficient water–oil in the absence of surfactant and
this coefficient tends toτ (1)ij in presence of a high content of
surfactant; the ternary parameterσw–o–s being equivalent
to the “screen” parameter used by Kilpatrick et al. [11] and
by Troully [41].The generalized expression of Eq. (59) can
be written as

τij = τ
(1)
ij + (τ

(0)
ij − τ

(1)
ij )exp

(
−

N∑
k=1

σ 2
ijkxk

)
(60)

in such a way that there are four parameters per binary:
τ
(0)
ij , τ (0)ji , τ (1)ij and τ (1)ji , plus 2(N − 2) ternary parameters

representing the influence of the other components of the
mixture over this binary (i.e. parametersσ ijk and σ jik

for k = 1, . . . , N and k �= i, j). The activity coefficient
expression of componenti derived from Eq. (52) is then

ln γi = ln γ comb
i + ln γ res

i (61)

where

ln γ comb
i = 1 −

(
φi

xi

)
+ ln

(
φi

xi

)

− z

2
qi

[
1 −

(
φi

θi

)
+ ln

(
φi

θi

)]
(62)

and

ln γ res
i = −q∗

i ln Si + qi

N∑
j=1

q∗
j

qj
xj

(
1 − τij

Sj

)
−

N∑
j=1

N∑
l=1

×

q∗

j xj θj (τ
(0)
lj − τ

(1)
lj )

(
σlji −∑N

k=1σ
2
ljkxk

)
Sj exp

(∑N
k=1σ

2
ljkxk

)


(63)

4.3. The ternary system brine–alcohol–oil

We first tried to represent the ternary system brine–
alcohol–oil. In fact, it is the only face of the tetrahedron for
which enough experimental data are available. In particular,
these data characterize the partition of the alcohol between
phases as shown in Fig. 7.

As mentioned early, a characteristic of this ternary system
is the change of orientation of the tie lines around a global
mass fraction in alcohol of 5%. It is essential to represent
this behavior well since it determines the passage of systems
of type Winsor I to Winsor II in the absence (or at weak
concentrations) of surfactant.
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Fig. 7. Representation of the alcohol partitioning between oil and brine phases. The circles are the experimental data used for the estimation of the extended
UNIQUAC [40] model parameters. The solid line is the calculated two-phase equilibria for the system brine−oil−alcohol at 25◦C. The dashed-dotted
line shows the occurrence of inversion of partition of the alcohol (about 5 mass%) between the brine and oil phases.

Fig. 7 shows the representation of the coefficient of
partition of the alcohol between water and oil. The curve
representing the mass fraction of alcohol in water accord-
ing to its mass fraction in oil cut effectively the bisector to
the neighborhood of a concentration of 5%. The estimated
binary parametersτw–o andτo–w, lead to a strong immis-
cibility water–oil in the absence of any amphiphile. The
success of this representation is a proof of the efficiency of
the UNIQUAC expression.

4.4. The quaternary system brine–alcohol–
oil–surfactant

The representation of the experimental data containing
surfactant is naturally more difficult, and the adjustment of
parameters is very long of the fact of the calculation com-
plexity. We are therefore constraint to treat sets of data while
adjusting subsets of parameters in order to approach very
gradually to the optimal parameters on the whole of points.
Besides, the convergence of the adjustment process is at-
tributed mainly to the parameter initialization.

The follow-up strategy was to preserve the parameters
water–oil, water–alcohol and alcohol–oil estimated from
the representation of the ternary water–alcohol–oil, and to
only adjust the other parameters (surfactant with the other
components). In fact, it can be noted that the UNIQUAC
expression of Nagata [40] did not allow taking into account
simultaneously the strong solubilization of water in oil
(Winsor II) in presence of surfactant and alcohol, and of
the immiscibility of these two components in the absence
of surfactant. Since parameters representing the mutual sol-
ubilities water–oil are essentiallyτw–o andτo–w, we have

chosen to consider them dependent of the surfactant content
according to Eq. (59), so that solely the water–oil–surfactant
σw–o–s and oil–water–surfactantσ o–w–s ternary parameters
were estimated during the regression of the data. This allows
us to have different values for the interaction parameters of
oil with water depending on the surfactant concentration.

It is important to point out that we do not try to give a pre-
cise molecular significance to these ternary parameters. We
try simply to get an expression of the excess Gibbs energy
having enough flexibility to represent the phase behavior
of complex mixtures such as micellar systems. The ternary
parameters are only an artifice that permits to treat the for-
mation of micelles like a physical contribution to the Gibbs
energy of the system rather than a chemical contribution.

Parametersτ (0) relative to the pair water–oil have been
already determined from ternary data water–alcohol–oil, and
they assure to represent well the immiscibility water–oil in
the absence of surfactant. The new expression of the excess
Gibbs energy allows then to introduce parametersτ

(1)
w−o and

τ
(1)
o−w as well as the ternary parameters water–oil–surfactant

and oil–water–surfactant. In order to get a unique set of
parameters regardless is the type of micellar system, we
should handle simultaneously the phase equilibria of type
Winsors I, II and III.

The whole set of parameters we obtained is listed in
Table 1. Parametersτ ij are expressed in terms of the differ-
ences in interaction energiesaij according to Eq. (58).

The results of the fit are shown in Fig. 8. In this figure, we
have reported the experimental domains (Winsors I, II, III,
and a single-phase zone) for the water–oil ratio equal to one.
The axes represent the global weight fractions of alcohol and
surfactant. This diagram shows clearly the transition Winsor
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Table 1
Estimated parameters of the modified UNIQUAC model for the system surfactant: (1): alcohol; (2): brine; (3): oil (4) at 25◦C

Component ri qi q∗
i

Pure component parameters
Surfactant (Witco TRS 10–80) 9.5370a 7.4858a 1.3575a

Alcohol (n-butanol) 3.4500 3.0500 0.8800
Brine (8 g/l NaCl) 0.9200 1.4000 0.9600
Oil (a C12–C14 fraction) 9.2206 7.6360 1.5017

i, j a
(0)
ij a

(0)
ji a

(1)
ij a

(1)
ji

Binary parameters
1, 2 −1919.5 −399.5 0.0 0.0
1, 3 −817.75 −2813.7 0.0 0.0
1, 4 −292.69 2259.5 0.0 0.0
2, 3 2556.4 370.97 0.0 0.0
2, 4 523.18 1321.9 0.0 0.0
3, 4 781.67 3080.5 −968.13 1189.2

i, j, k σ ijk σ jik

Ternary parameters
3, 4, 1 3.6986 11.061

a Estimated during data regression.

I → Winsor III → Winsor II when alcohol is added to the
system.

We can see in this figure that the model correctly repre-
sents the qualitative phase behavior of most points (e.g. the
experimental Winsor II domain), with the exception of the
borderline between the Winsor I and Winsor III domains. It
is shown thus that the proposed extremely simple model per-
mits to represent adequately the different types of micellar

Fig. 8. Experimental and calculated phase equilibrium domains of the model system at 25◦C for a water-to-oil ratio equal to one. The solid line is the
experimental boundary and the dashed line is the calculated one with the proposed equation.

systems according to the global composition of the mixture.
In addition, data of the micellar phase of type Winsor II are
represented quantitatively (see Fig. 9).

On the contrary, the representation of the micellar phase
compositions Winsors I and III remains poor. In particular,
the calculated concentrations of oil in the aqueous phase of
a system of type Winsor I are very lower than observed data.
With regard to systems of type Winsor III, the importance of
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Fig. 9. Comparisons between experimental and calculated mole fractions at 25◦C of the phase micellar of type Winsor II, for a water-to-oil ratio equal
to one.

Fig. 10. Experimental and calculated phase equilibrium domains of the model system at 25◦C for a water-to-oil ratio equal to three. The solid line is
the experimental boundary and the dashed line is the calculated one with the proposed equation.
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the salt partition between the aqueous phase and the micel-
lar phase makes difficult to get a quantitative representation
from a pseudo-quaternary representation of the problem. It
is therefore little surprising to observe large residues on the
composition of the micellar phase. Nevertheless, this argu-
ment may be not sufficient to explain the bad representation
of the data of type Winsor I.

Finally, we tried to predict in a plane alcohol–surfactant
the different phase domains for a water-to-oil ratio equal
to 3, from parameters adjusted with data of the water-to-oil
ratio equal to 1, while using data of global composition
of the first one. Fig. 10 shows both the experimental and
calculated domains. It can be observed from this figure that
it is possible to predict the existing four domains on this
plane (i.e. Winsors I, II, III, and a single-phase zone) in spite
of a representation quantitatively insufficient.

5. Conclusions

The purpose of this work for representing micellar sys-
tems by means of chemical engineering tools has been well
justified even though it was necessary to adapt the usual
thermodynamic models to the nature of these systems. Thus,
during this study we presented a thermodynamic model able
to represent, at least qualitatively, the phase behavior of qua-
ternary microemulsion systems.

This model is in fact a modification of the extended
UNIQUAC expression of Nagata [40]. It allows, while
using parameters of ternary interaction, to take into ac-
count the strong solubilization of water in oil in presence
of surfactant and alcohol, as well as of the immiscibility
of these two components in the absence of surfactant. In
particular, the ternary parameter water–oil–surfactant plays
here a similar role to the screen parameter used by Kil-
patrick et al. [11] and by Troully [41] in their calculations.
Nonetheless, it should be pointed out that this model does
not consider the type of existing structure in these micellar
systems.

For the Winsor II microemulsions, the model correctly
represents the phase behavior for most experimental points;
i.e. the compositions of theses phases is quantitatively rep-
resented in most of the cases. For the Winsor I or III mi-
croemulsions, however, the oil content is always strongly
underestimated by the model, which reveals a lack of flex-
ibility of our equation or perhaps due to oversimplification
in the definition of pseudocomponents.

Besides, in order to represent data of type Winsor III
quantitatively it will be necessary to achieve complemen-
tary experimental determinations to have access to the
partition of salt between phases water and microemulsion
and, consequently, a complement of modeling to introduce
the effect of salt explicitly. Also, an investigation of the
influence of pressure and temperature on the phase behav-
ior of microemulsion systems is recommended to elucidate
oil reservoir conditions. This will allow minimizing the

consumption of surfactant and at the same time maximizing
the recovery of residual oil in surfactant flooding processes.

Thus, it can be concluded that simple equations for the ex-
cess Gibbs energy are able to represent the qualitative phase
behavior of microemulsions. However, a precise quantitative
representation of the whole phase diagram will still require
much additional work.
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Micellaires. Tables des Données d’Equilibre et Propriét́es de Phase
du Syst̀eme Mod̀ele. Rapport IFP 31905, 1984.

[31] A.M. Bellocq, J. Biais, B. Clin, A. Gelot, P. Lalanne, B. Lemanceau,
J. Colloid Interface Sci. 81 (1980) 266.

[32] A.M. Bellocq, D. Bourbon, B. Lemanceau, J. Colloid Interface Sci.
79 (1981) 419.
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